DETERMINATION OF THE FLUID HOLDING CAPACITY AND PROTEIN RETENTION OF THE NEW MONOFILAMENT DEBRIDER DEVICE DEBRISOF® LOLLY

C. Wiegand1, K. Reddersen1, M. Abel2, C. Schmalenbach3, W. Harreither3, P. Ruth4, J. Muldoon4, U.-C. Hipler1

1Department of Dermatology, University Medical Center Jena, Germany 2Lohmann & Rauscher GmbH & Co. KG, Rengersdorf, Germany 3Lohmann & Rauscher GmbH & Co. KG, Schloßau/T列ising, Austria 4Activa Healthcare, Burton upon Trent, UK

Introduction
Chronic wounds contain devitalized, necrotic or sloughy tissue that impedes healing as it acts as proinflammatory stimulus or serves as media for microorganisms [1]. For mechanical debridement mainly wet-to-dry gauze is used, which nondiscriminatory removes devitalized tissue from the wound, resulting in pain and damaged healthy tissue [2]. The new debrider device Debrisof® Lolly consists of polyester monofilament fibres presenting a novel, fast and almost painless option for debridement. Evidence further suggests that greater dressing moisture retention is associated with fewer clinical infections, greater patient comfort and reduced scarring. Keeping this in view, prevention of desiccation of a wound and achieving moisture balance should also be a focus during debridement. Hence, a high fluid holding capacity, beneficial for taking up excess amounts of wound exudates, is not only advantageous for dressings but also for debridement devices such as the Debrisof® pad (figure 1A) or the Debrisof® Lolly (figure 1B).

Material & Methods
The fluid holding capacity of the monofilament debrider device Debrisof® Lolly (Lohmann & Rauscher) was investigated in vitro. Therefore, samples were soaked in (a) distilled water and (b) 10% BSA solution. Sample weight was immediately determined. Samples were then dried at 80°C for 4h.

Results
The product Debrisof® Lolly absorbs and binds water and protein solutions. The water handling of Debrisof® Lolly (figure 3) was similar to that of Debrisof® pads (figure 4). Although a higher resilience to fluid drainage in the vertical position could be observed for the product Debrisof® Lolly. The effect of the protein content on the absorption behavior was determined by analyzing the fluid holding capacity (FHC) using a 10% BSA solution. The FHC decreased significantly with increased protein concentration. Nonetheless, a distinct protein retention from the 10% BSA solution of 7.4 g/g was observed for the Debrisof® Lolly.

Conclusion
The monofilament wound debrider device Debrisof® Lolly presents a novel, fast, and almost painless option for debridement. Due to its physicochemical nature it is advantageous with regard to fluid holding capacity. Furthermore, good results for the fluid holding capacities were obtained at high protein concentrations. Hence, this new technique should provide a valuable tool in treatment of patients with chronic wounds.

References