Influence of the collagen wound dressing Suprasorb® C on proteases and cytokines in chronic wounds

J. Norgauer1, U. Schönfelder1, C. Wiegand1, M. Abel2, P. Elsner1, U.-C. Hippler1

1Department of Dermatology, Friedrich Schiller University of Jena, Germany
2Lohmann & Rauscher GmbH & Co. KG, Rengsdorf, Germany

Introduction
There is significant difference in the healing of acute and chronic wounds, e.g. diabetic or venous ulcers. Numerous studies have shown that exudates from non-healing wounds contain elevated levels of proteolytic enzymes and inflammatory immune modulators [1]. As a previous study has shown, the wound dressing Suprasorb® C, composed of bovine collagen type I, is able to bind significant amounts of PMN elastase and to scavenge reactive oxygen and nitrogen species [2]. The aim of this study was to quantify the concentrations of PMN elastase and pro-inflammatory cytokines in the exudates of chronic and acute wounds and to investigate the ability of Suprasorb® C to bind these proteins and thus to support the normal wound healing process.

Material and Methods
Wound fluid was collected from patients with chronic wounds as well as from patients with small acute lesions. Subsequently, the concentrations of PMN elastase or cytokines in the supernatants were determined using suitable ELISAs (Milenia). Statistical analysis was performed with the SPSS software (version 10.2).

Each sample was included in 1 mL of a defined solution from PMN elastase (250 ng/mL), IL-1β (100 pg/mL), IL-6 (100 pg/mL), or IL-8 (100 pg/mL), respectively, and incubated up to 24 h at 37°C. Afterwards, the supernatants were collected and the concentration of the unbound proteins could be determined by means of suitable ELISAs (Milenia).

Results
The concentrations of PMN elastase, IL-1β, IL-6 and IL-8 were significantly higher in the exudates of chronic wounds (fig. 1 and 3). In addition, incubation with Suprasorb® C lowered the concentration of unbound PMN elastase (fig. 3), IL-1β and IL-6 significantly. Only a minor effect was found for IL-8. However, double-sized (1.0 cm²) pieces of Suprasorb® C bound the cytokine significantly (fig. 2). In contrast, bacterial cellulose was only effective to bind IL-6.

Discussion
The physical properties of Suprasorb® C such as porous structure (Fig. 4) and capillary activity allow the absorption of large quantities of fluid. As the results of this study demonstrate, Suprasorb® C is also able to absorb substantial amounts of PMN elastase, IL-1β, IL-6 and IL-8.

Differences in the binding capacity of the collagen sponge for different proteins might be due to structural differences of the target proteins. For instance, IL-8 has been found to form dimers [3], which probably impede the absorption process.

References

Annual Meeting of the European Wound Management Association (EWMA), Prague 18 – 20 May 2006